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Abstract 

To perform complex tasks, a team of robots requires both 

reactive and deliberative planning. For reactive control, a 

restricted variant of Linear Temporal Logic called General 

Reactivity(1) can be used to synthesize correct-by-

construction controllers in polynomial time, but they often 

ignore time and resource constraints to maintain tractable 

synthesis. For deliberation, hierarchical planning can be 

used to reason about time and resources. However, the 

coordination of reactive control and deliberation remains a 

challenge, which we accomplish through a set of 

Coordination Variables. We integrate these two approaches 

in the Situated Decision Process (SDP), a system that we are 

developing. The SDP will allow an Operator to control a 

team of semi-autonomous vehicles performing information 

gathering tasks for Humanitarian Assistance / Disaster 

Relief operations. We demonstrate that the SDP responds to 

a dynamic, open world while ensuring that vehicles 

eventually perform their commanded actions. 

1.  Introduction and Motivation 

We study the problem of coordinating a team of semi-

autonomous vehicles to gather information soon after a 

natural disaster strikes (e.g., the Philippines Typhoon). 

Emergency response personnel need updated information 

concerning the whereabouts of survivors, the condition of 

infrastructure, and recommend ingress and evacuation 

routes. Current practice for gathering this information 

relies heavily on humans (e.g., first responders, pilots, 

drone operators). A team of autonomous vehicles with 

sensors can facilitate such information gathering tasks, 

freeing humans to perform more critical tasks in 

Humanitarian Assistance / Disaster Relief (HA/DR) 

operations (US Dept. of Navy 1996). Coordinating robotic 

teams in a HA/DR operation presents unique challenges 

because each disaster is distinct. Thus, creating a single 

robotic controller is untenable because no single domain 

model can incorporate all the necessary steps for a mission. 

Personnel should be able to tailor possible vehicle missions 

to the current situation. 

Reasoning on different granularities of abstraction and 

time scales is a common challenge in robotics (e.g., task 

planning vis-à-vis reactive planning). Robotic controllers 

often employ Finite State Automata (FSAs) to determine a 

robot’s next action. Although they are fast to execute, 

hand-writing FSAs is error prone, tedious, and brittle. 

Recent advances apply a restricted variant of Linear 

Temporal Logic (LTL) called General Reactivity(1) to 

automatically synthesize FSAs in time cubic in the size of 

the final FSA (Bloem et al. 2012). But synthesis quickly 

becomes impractical for teams or dynamic environments. 

For example, Table 1 shows the number of seconds to 

synthesize FSAs for two vehicles assigned to survey two or 

more regions; limiting the FSA size is clearly justified. 

Task planning is naturally suited to limit the FSA size 

for teams of vehicles (e.g., by pre-allocating missions to 

vehicles or by assigning vehicles to teams). We employ 

hierarchical decomposition (task) planning because it 

matches well with how humans view HA/DR operations 

(US Dept. of Navy 1996).  

However, linking the task and reactive planning layers is 

a challenge. In particular, mission plans and vehicle 

controllers must expose useful abstractions to each other 

while allowing both to adjust to dynamic changes. To 

address this, we introduce the use of Coordination 

Variables, which integrate team mission goals with the 

vehicle controllers by providing abstraction predicates for 

vehicle commands, vehicle state (e.g., current behavior and 

health), and abstract vehicle sensor data. A secondary 

contribution of this paper is applying Goal Refinement 

(Roberts et al. 2014) to coordinate those vehicle missions 

in support of larger HA/DR operations. 
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We describe an initial prototype of our Situated Decision 

Process (SDP), which manages vehicles that can perform 

three mission goals: (1) survey a region to assess roads, (2) 

locate a person, and (3) act as a communications relay for 

that person. We envision that a human Operator would 

input a set of HA/DR mission priorities to the SDP, which 

would aid the Operator in managing the vehicles to 

perform those missions. We describe a minimal HA/DR 

scenario (§2) and then detail the components of our SDP 

prototype (§3). We then demonstrate how the SDP 

responds to a dynamic, open world scenario while tracking 

progress toward mission goals (§4). We conclude by 

discussing related work (§5) and future work (§6). 

2.  HA/DR Scenario and Domain Model 

Figure 1 shows an airport region (upper left) and, 3-5 km 

away from the airport, a Very Important Person (VIP) 

region (lower middle) that is centered on a particular 

building near the suspected location of the VIP. The VIP 

emits a radio signal (e.g., cell phone signal). Two fixed-

wing air vehicles (in yellow) are tasked with assessing the 

two regions and finding the VIP. They carry Electro 

Optical and Radio Frequency sensors that activate when 

the target is within their sensor radius.  

 Although we designed significantly more challenging 

scenarios, we can use this minimal scenario to demonstrate 

the SDP’s key capabilities, namely that: (1) the SDP can 

create new goals responding to an open world (e.g., it 

collectively responds to the VIP being found); (2) a vehicle 

can make decisions autonomously (e.g., a vehicle may 

begin relaying the VIP once found); (3) the SDP responds 

to vehicles making autonomous decisions (e.g., it notes the 

vehicle relaying instead of surveying when the VIP is 

found); and (4) the SDP can retask a vehicle to complete a 

mission (e.g., it retasks stalled missions to idle vehicles). 

3.  Situated Decision Process (SDP) 

Figure 2 displays an abstraction of the SDP components 

we discuss in this paper. The SDP is partitioned into three 

abstract layers, each composed of components that perform 

specific tasks. The UI Layer (colored white) manages 

interaction with the Operator. In this layer, the User 

Interface (UI) component collects input from a human 

Operator and conveys Operator feedback to the other 

components. However, it is not a focus of this paper and 

we will not discuss it further. The Centralized 

Coordination Layer (colored gray) focuses on the mission 

and task abstractions for the vehicle teams. The Distributed 

Layer (colored black) manages the vehicles or vehicle 

simulation. We now detail the components in the 

Centralized Coordination and Distributed layers. 

3.1 Domain Manager 

To construct a domain model, we elicited feedback from 

three Navy Reservists who have flown in or commanded 

HA/DR operations. We then encoded the domain 

knowledge as a Hierarchical Goal Network (Shivashankar 

et al. 2013; Geier & Bercher 2012). Figure 3 displays the 

goal network for the scenario in Figure 1. The root 

decomposes into two top-level operational goals “Logistics 

Operations” and “Security Operations.” The former of 

these decomposes into “Assess Infrastructure” while the 

latter decomposes into a goal to “Maintain VIP Safety.”  

 Operational subgoals eventually decompose into 

AchieveTeamMission goals, which themselves decompose 

into the VehicleMission goals associated with specific 

Figure 1: Example airport and VIP regions. The base is 

located between the regions. Also shown are the 

trajectories (blue lines) for two vehicles (yellow dots). 

Table 1: Synthesis times as the number of regions 

increases in the LTL specification as measured on a 

Windows 8.1 laptop, running a Core i5 processor. 

# Survey 

Regions 
# Propositions 

Synthesis Time 

(seconds) 

2 14 1.078 

3 16 3.675 

4 18 17.608 

5 20 104.008 

 

Figure 2: An abstract view of the Situated Decision 

Process (SDP). Nodes are colored by layer: UI (white), 

Coordination (Gray), and Vehicle (black). 



teams. These most primitive goals of this goal network are 

intended to match with tasks that the vehicles can perform. 

The goal network presented here is hand-coded, but we 

plan to implement this model in the ANML language 

(Dvorák et al. 2014) and integrate a full planning system in 

the SDP. The SDP will eventually guide vehicles in 

cooperation with its Operator(s), but in this paper we 

assume static mission goals, a fixed number of vehicles, 

and a fixed allocation of the vehicles to tasks.   

3.2 Mission Manager and Goal Refinement 

The Mission Manager decomposes the high-level mission 

goals provided by the user (e.g., regions of interest, overall 

vehicle tasks, and available vehicles) into primitive goals 

for the vehicle teams. One of the challenges in 

coordinating task and reactive planning is unifying the 

goals across the system so that goals can be tracked during 

execution. To unify goals, we employ a theoretical model 

called Goal Refinement (Roberts et al. 2014) that builds on 

previous literature in Goal Driven Autonomy (Klenk et al. 

2013), which is a model of Goal Reasoning (Vattam et al. 

2013). Goal Refinement incorporates recent perspectives 

on the actor (Ghallab, Nau, and Traverso 2014) as well as 

deliberation functions (Ingrand and Ghallab 2014). Goal 

Refinement also complements a plan’s lifecycle (e.g., 

(Pollack and Horty 1999; Myers 1999)). 

 A central part of Goal Refinement is the Goal Lifecyle, 

shown in Figure 4. This lifecycle captures the possible 

decision points of goals in the SDP. Decisions consist of 

applying a strategy (arcs in Figure 4) that transitions a goal 

among modes (rounded boxes) in the lifecycle. The 𝑔’s in 

the goal lifecycle correspond to goals (e.g., goals in the 

goal network of Figure 3), while 𝑥’s correspond to 

expansions (e.g., decompositions of non-primitive goals, 

allocations and trajectories for primitive goals).  

 We focus our discussion the lifecycle strategies that we 

implemented for the SDP and the goal network in Figure 3. 

While this particular scenario does not exercise all the 

strategies of the goal lifecycle, the more advanced 

scenarios we designed exercises all the strategies.   

 When loading, the SDP automatically formulates and 

selects an initial goal to AchieveDomainLoaded (not 

shown).  The expansion of this goal results in the “AACS 

Domain Root” goal being formulated and selected.  A non-

primitive domain goal is expanded by instantiating a sub-

goal tree for the goal.  The SDP commits to and dispatches 

the only expansion available for these goals, since this is a 

small example.  These non-primitive goals remain in a 

dispatched state until their subgoals finish. 

 Expanding an AchieveTeamMission goal results in a 

specific VehicleMission goal, which includes details 

regarding a proposed allocation of a vehicle to a specific 

trajectory (cf. the lawnmower flight paths of Figure 1).  

Once the VehicleMission details are approved – either 

automatically or by the Operator – the Mission Manager 

commits and dispatches the proposed expansion of the 

VehicleMission for execution.  The  Coordination Manager 

and Team Executive then begin sending vehicle 

commands.  The VehicleMission goal remains dispatched 

until new information (e.g., a progress update) causes it to 

become finished or need some other resolve strategy.   

 The Mission Manager has triggers to monitor the 

dispatched goals so that it will notice if the goal is stalled 

or completed by the executive.  The Mission Manager uses 

a repair strategy on the original vehicle allocation to 

retasking a vehicle for a stalled VehicleMission,   

3.3 Synthesis Manager 

The Synthesis Manager takes as input an LTL specification 

and synthesizes an FSA for the Vehicle Controller. To 

perform synthesis, we extend the work of Kress-Gazit et al. 

(2009) using portions of the LTLMop toolkit (Jing et al. 

2012). LTL compactly encodes the mapping between the 

Centralized Coordination Layer's commands and the 

robots' behaviors, along with any restrictions on their 

capabilities. This allows SDP to generate reactive 

controllers that match a specification without requiring a 

hand-coded FSA. Space limitations preclude a full 

exposition of General Reactivity(1) or LTL Synthesis. 

 Figure 5 provides a readable example of the LTL 

English equivalent. "Goals" in an LTL specification 

describe behaviors that the vehicle is required to perform 

infinitely often (i.e., always eventually do behavior). Line 

1 specifies the vehicle actions, where each action 

corresponds to a vehicle behavior that performs the 

intended action. Line 2 details the LTL sensors, which are 

Figure 3: Goal decomposition during an SDP run. 

Figure 4: The Goal Lifecycle by Roberts et al. (2014). 



the observations that the robot can take (see §3.4 for more 

detail). Line 3 specifies the initial conditions. Line 4 

specifies a safety condition concerning LowFuel. Line 5 

specifies that at least one command is active. Lines 6-12 

perform “goal” selection based on sensors. Lines 13-16 

perform conditional action selection depending on the 

state. A region file (not shown) specifies the regions and 

their adjacencies, which include Base, AreaA, and AreaB.  

3.4 Coordination Manager & Coordination 

Variables 

To link the mission goals and vehicle FSAs, we use 

Coordination Variables, which capture the key 

abstractions of each layer for each other. These variables 

are linked to the VehicleMission goals in the Mission 

Manager (see Figure 3) and to the sensors of the LTL 

specification (Figure 5, line 2). Each layer responds 

differently to these variables during execution. 

 Command Variables are provided to control the 

vehicle behavior. For our example scenario the commands 

are DoSearchA, DoSearchB, DoRelay, DoSearchReactive, 

and DoReturn. The Mission Manager uses these variables 

to command a vehicle to perform a specific task. The Team 

Executive can send progress updates using these variables.  

 Mission Variables allow the Vehicle Controller and 

Team Executive to send updates about notable events. The 

only Mission Variable is VIPDetected.  

 Health Variables allow the Vehicle Controller and 

Team Executive to send updates about vehicle status. For 

this scenario the only Health Variable is LowFuel.  

3.5 Team Executive, Vehicle Control and 

Simulation 

The Team Executive sets/unsets the Command sensors on 

the vehicles' FSAs based on the schedule developed by 

Mission Manager. It also maintains each vehicle's status 

and sensor information, allowing the Centralized 

Coordination Layer to monitor the team's progress and 

detect notable events. 

 Vehicles are controlled using hybrid controllers that read 

the FSA and reactively select a physics-inspired behavior 

implemented using physicomimetics (Apker et al. 2014). 

We simulated the scenario in MASON (Luke et al. 2005).  

4.  Demonstration 

To demonstrate how the SDP responds to a notable event 

in an open world we generate 30 scenarios based on Figure 

1. We select 30 random airports from OpenStreetMaps 

data for North Carolina (Geofabrik 2014) and then select 

buildings within 3-5 kilometers of the airport. Buffer 

regions of 300 meters around the airport and the building 

serve as the airport and VIP regions, respectively. Each run 

completes when (1) both regions are completely surveyed 

and the VIP is found or (2) the simulation reaches 35,000 

steps. Each step is approximately one second of real time 

simulation.   

 At the start of the scenario, one vehicle is assigned to 

assess the Aiport Region, denoted by AirportVehicle, and 

the other vehicle is assigned to the VIP Region, denoted 

VIP Vehicle. Vehicles return to the base when their fuel is 

sufficiently low. Vehicle behavior depends on whether the 

vehicles can retask themselves to relay when the VIP is 

found (denoted +Relay) or they do not relay (–Relay). 

Regardless of whether a vehicle begins relaying, the 

Mission Manager should always create a new “Relay VIP” 

goal when the VIP is found. The Mission Manager 

behavior depends on whether it is allowed to retask a 

vehicle (+Retask) or not (–Retask).  

Condition 1: Find VIP (-Relay -Retask) provides a 

baseline. In it the vehicles detect the VIP and a new goal to 

relay the VIP appears when the VIP is found. Getting the 

SDP to do something meaningful with the “Relay VIP” 

goal is our next condition. 

 Condition 2: Relay VIP (+Relay -Retask) 

demonstrates that a vehicle can retask itself with a new 

goal by automatically relaying the VIP once found. The 

retasking is embedded in the Vehicle Controller (see 

Figure 5, line 15). However, this change of behaviors 

needs to be shown in the goal network, where the goal 

“Mission: RelayVIP” should appear after the VIP is found. 

However, nothing is done with the new goal and VIP 

Vehicle does not complete the entire survey of the VIP 

region because it switches its own task to relaying.  

1. Actions: ExploreA, Relay, ExploreA, Search, Recharge  

2. Sensors: DoSearchA, DoSearchB, DoRelay, DoSearchReactive, 
DoReturn, VIPDetected, LowFuel 

3. robot starts in Base with false; environment starts with DoSearchA 

4. if you sensed LowFuel then always LowFuel 
5. if you are sensing DoRelay then  

always not DoReturn and not DoSearchReactive 

6. if not LowFuel and DoSearchA and not DoRelay then 
infinitely often ExploreA 

7. if not LowFuel and DoSearchB and not DoRelay then 

infinitely often ExploreB 
8. if not LowFuel and DoSearchA and DoRelay then 

infinitely often ExploreA or Relay 

9. if not LowFuel and DoSearchB and DoRelay then 
infinitely often ExploreB or Relay 

10. if not LowFuel and DoSearchReactive then infinitely often Search 

11. if not LowFuel and DoReturn then infinitely often Base 

12. if LowFuel then infinitely often Recharge 

13. do ExploreA iff robot is in AreaA and not sensing LowFuel and 

not sensing (VIPDetected and DoRelay) and sensing DoSearchA 
14. do ExploreB iff robot is in AreaB and not sensing LowFuel and 

not sensing (VIPDetected and DoRelay) and sensing DoSearchB 

15. do Relay iff you are not sensing LowFuel and sensing 
VIPDetected and sensing DoRelay 

16. do Recharge iff you are in Base and sensing LowFuel 

Figure 5: The approximate English description used for 

synthesis of the controllers in the demonstration. 



 Condition 3: Relay and Retask (+Relay +Retask). To 

address the problem of the VIP region remaining 

unfinished, the Centralized Coordination Layer is allowed 

to retask the Airport Vehicle so it finishes the VIP Region 

survey after completing its area first.   

 When we run the simulation on the three conditions, we 

observe exactly the expected results. In every case, a new 

goal is observed in the Mission Manager after the VIP is 

found. In the Relay VIP condition, the VIP Vehicle begins 

relaying as expected, leaving the VIP Region unfinshed. 

When the Mission Manager is allowed to retask vehicles, 

we observe that all three missions complete.  

5.  Related Work 

Planning trajectories for teams a priori to achieve a single 

objective requires solving a high dimensional optimization 

problem (Yilmaz et al. 2008) to compute optimal 

trajectories that are tightly coupled to the initial 

assumptions/goal. Bio-inspired and other reactive guidance 

strategies simplify this problem by using more goal-

directed behaviors for area coverage (Liu and Hedrick 

2011) and discrete target tracking (Haque et al. 2008; 

Kruecher et al. 2007). These behaviors rely on local 

measurements and instantaneous gradients to guide robots. 

Still, no behavior or trajectory generator can handle all 

contingencies a priori in complex, open environments. 

A promising approach, inspired by animal behavior, 

uses FSAs for mobile robot guidance (Balch et al. 2006). 

Hand-coding an FSA for each execution of a robot is 

tedious and error prone. Kress-Gazit et al. (2009) instead 

synthesize an FSA from an LTL specification using a game 

theory approach (Bloem et al. 2014) in which the robot 

takes actions to achieve its goals against actions taken by 

the environment (i.e., the adversary). This strategy 

guarantees correct behavior if the LTL-spec is never 

violated, but synthesis is quadratic in the number of 

(environmental and sensing) goals (Bloem et al. 2012) and 

is intractable for large teams of robots. Our approach 

preselects missions for vehicles prior to the synthesis of an 

FSA, which reduces the size of the LTL specification and 

thus reduces the computational time for synthesis.  

Goal refinement builds on the work in plan refinement 

(Kambhampati, Knoblock, & Yang 1995), which equates 

different kinds of planning algorithms in plan-space and 

state-space planning. Extensions incorporated other forms 

of planning and clarify issues in the Modal Truth Criterion 

(Kambhampati and Nau 1994). More recent formalisms 

such as Angelic Hierarchical Plans (Marthi et al. 2008) and 

Hierarchical Goal Networks (Shivashankar et al. 2013) can 

also be viewed as leveraging plan refinement. The focus on 

constraints in plan refinement allows a natural extension to 

the many integrated planning and scheduling systems that 

use constraints for temporal and resource reasoning. 

The goal lifecycle bears close resemblance to that of 

Harland et al. (2014) and earlier work (Thangarajah et al., 

2010). They present a goal lifecycle for BDI agents, 

provide operational semantics for their lifecycle, and 

demonstrate the lifecycle on a Mars rover scenario. Work 

by Winikoff et al. (2010) has also linked Linear Temporal 

Logic to the expression of goals. Our work differs in that it 

focuses on teams of robots rather than single agents. 

Our approach of coordinating behaviors with constraint-

based planning is inspired by much of the work mentioned 

by Rajan, Py, and Barriero (2013). Our Team Executive 

leverages the Executive Assistant of Berry et al. (2003). 

6.  Summary and Future Work 

We detailed our implementation of a system, called the 

SDP, which links hierarchical task planning (i.e., a goal 

network) and reactive controllers by synthesizing correct-

by-construction FSA vehicle controllers. The central 

contribution of this paper is an interface (i.e., the 

Coordination Variables) that allows task planning to 

control and receive feedback from a reactive layer. Our 

approach saves considerable computation during FSA 

synthesis. In a small demonstration, we showed that our 

implementation of the SDP adjusts to notable events (e.g., 

finding a VIP) or retasks vehicles to continue stalled 

missions when such events occur. 

 Future work will consist of further automating portions 

of the SDP and enriching the domain model. For example, 

we plan to extend the domain model to fully encode 

temporal and resource concerns similar to the TREX 

system (Rajan, Py, and Barriero 2013). We also plan to test 

the SDP in more challenging environments, which will 

require allowing vehicles to set their own command 

sensors autonomously and moving the Team Executive to 

the robotic platforms with sufficient computational power. 

Finally, we plan to incorporate richer sensor models and 

higher-fidelity simulations.  Ultimately, we plan to run the 

SDP  on actual vehicles and perform user studies on its 

effectiveness in helping an Operator coordinate a team of 

vehicles in Disaster Relief. 
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